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Abstract 
In this study, we compare six commonly used methods for the downward continuation of airborne gravity 
data. We consider exact and noisy simulated data on grids and along flight trajectories and real data from 
the GRAV-D airborne campaign. We use simulated respectively real surface gravity data for validation. 
The methods comprise spherical harmonic analysis, least-squares collocation, residual least-square 
collocation, radial basis function, the inverse Poisson method and Moritz’s analytical downward 
continuation method. We show that all methods perform similar in terms of surface gravity values. For real 
data, the downward continued airborne gravity values are used to compute a geoid model using a Stokes-
integral-based approach. The quality of the computed geoid model is validated using high-quality GSVS17 
GPS-levelling data. We show that the geoid model quality is similar for all methods. However, the least-
square collocation approach appears to be more robust and flexible than the other methods provided that 
the optimal covariance function is found. We recommend it for the downward continuation of GRAV-D 
data, and other methods for second check. 

1. Introduction 
The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project aims to cover the US 
territory with airborne gravity measurements while extending about 100 km into Canada and Mexico. It is 
the largest airborne gravimetric campaign ever undertaken in the world. The project is to develop a geoid-
based vertical datum at the precision of 2 cm for much of the country. The flight heights range from 4 to 
11 km with a nominal height of about 6 km to achieve a minimum spatial resolution of 20 km (GRAV-D 
Team 2017a). The GRAV-D data need to be reduced onto the Earth’s surface or geoid when being combined 
with terrestrial gravity data by the Stokes method to determine a gravimetric geoid model. This reduction 
step has been termed as the downward continuation (DC). One intermediate question is: which method is 
most suitable for the DC of airborne gravity data, in particular the high-altitude GRAV-D data? The answer 
is not yet evident despite studies and the development of DC methods for many decades. 
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The DC problem (DCP) is an ill-posed problem (Schwarz 1978; Rummel et al. 1979; Jekeli 1981). Schwarz 
(1978) summarizes numerical features of the ill-posed problem as follows: 

a) The solution does not continuously depend on the given data, i.e. small changes in the data may 
cause large changes in the solution. 

b) The matrices resulting from the discretization of the problem will be ill-conditioned, i.e., the 
condition numbers will be large enough to severely amplify data noise. 

c) The accuracy of the solution does not increase with the grid density, i.e., as the grid size becomes 
smaller, the solution error will increase in any norm. 

As Milbert (1999) stated, one is faced with the “dilemma of downward continuation”. If one uses a coarse 
grid, the geoid omission error may be dominant; if one uses a fine grid, the geoid commission error may be 
dominant, mainly due to noise amplification during downward continuation. He showed numerically that 1 
mGal zero-mean white Gaussian noise may be amplified to 47.5 mGal when downward-continued from an 
altitude of 4000 m without regularisation.  

There have been a long history of studies dealing with DCP of airborne gravity data in the context of (quasi-
) geoid modelling (see e.g. Forsberg 1987; Novák and Heck 2002, Novák et al 2003). There are three 
classical methods for the DC of gravity data: i) inverse Poisson, which solves Poisson’s integral equation 
(see e.g. Heiskanen and Moritz 1967; Vaníček et al. 1996; Martinec 1996); ii) Moritz’s analytical DC 
(1980); and iii) Least-Squares Collocation (LSC) (Moritz 1980; Forsberg 1987; Tscherning 2013). In recent 
decades, Radial Basis Functions (RBF) have become popular in local (quasi-) geoid modelling, but can also 
be used straightforwardly for gravity DC (e.g. Schmidt et al., 2007; Klees et al.; 2008, Lieb et al. 2016; Li 
2018; Liu et al. 2020). Furthermore the Spherical Harmonic Analysis (SHA) method has been adapted for 
DC of GRAV-D data (Smith et al. 2013; Holmes, 2016). Recently, the Residual LSC (RLSC) has been 
developed and applied to GRAV-D data (Willberg et al., 2019; 2020). A question naturally arises: do all 
these methods perform equally? 

This paper characterizes the DCP, assesses stability and equivalence of the six DC methods, and finds 
suitable DC methods for DC of airborne gravity data. Section 2 reviews the DC methods. Section 3 
characterizes the ill-posedness of the DCP. Section 4 discusses stabilization methods for the DCP. Section 
5 applies the DC methods to GRAV-D data. Section 6 concludes this study. 

2. Overview of DC methods 
There are six methods considered in this study. The first one is the spherical harmonic analysis approach 
currently used at the National Geodetic Survey (Smith et al. 2013). The basic idea is to convert the local 
data into global data by padding zeros outside of the study area with tapering near the border area to have 
a gradual transition from non-zero values to zero values. Appendix A1 provides more information about 
this method. 

The second method is Least Squares Collocation (LSC). The standard LSC was originally derived for 
stationary processes and, later, extended to weakly stationary processes (Darbeheshti and Featherstone 
2010). The quality of a LSC solution depends on the correctness of the covariance function. In the context 
of gravity field modeling, there are many previous studies on how to build covariance functions (e.g., Kaula 
(1959), Krarup (1969), Moritz (1972), Tscherning and Rapp (1974), Forsberg (1987), and Jekeli (2010)). 
The covariance function which is most commonly used for airborne gravity data is the one by Forsberg 
(1987), see Appendix A.2. This study also includes the newly developed Residual Least Squares 
Collocation method (RLSC) (Wilberg et al. 2019; 2020), see Appendix A.3 for more information. 



The fourth method is least-squares Radial Basis Functions (RBF) approximation (see e.g. Schmidt et al. 
2007; Klees et al. 2008). This method has become popular in regional gravity field modelling due to the 
quasi-localizing properties of the RBFs (e.g., Schmidt et al., 2007; Klees et al. 2008; Slobbe 2013; Lieb et 
al. 2016; Slobbe et al. 2019; Liu et al. 2020). Once an RBF model is determined, it can also be used for 
downward continuation. The detailed formulation is given in Appendix A.4. 

The fifth method is based on Poisson’s integral and numerically solves a first-kind integral equation (e.g., 
Heiskanen and Moritz 1967; Vaníček et al.  1996; Martinec 1996; Milbert 1999; Novák and Heck 2002; 
Alberts and Klees 2004). Several different regularization strategies of this ill-posed problem can be found 
in previous studies (see e.g., Alberts and Klees 2004, Jiang et al 2011, Liu et al 2016, Zhao et al 2018). 
More comprehensive discussions of regularization can be found in, e.g., Xu and Rummel (1994), Kusche 
and Klees (2002), Kern (2003), and Cai et al (2004). In this study, the integral equation is discretized and 
solved numerically using the method of Huang (2002). The detailed formulation is given in Appendix A.5.  

The sixth method included in this study is the Analytical Downward Continuation (ADC), which was 
formulated for the Molodensky boundary value problem by Moritz (1980).  The detailed formulation is 
given in Appendix A.6. 

3. Characterization of the ill-posed problem 
 

3.1 Amplification of errors 
In physical geodesy and geophysics, the Earth’s gravity field is split into the normal gravity field of a 
reference ellipsoid and the anomalous gravity field. The normal gravity field is mathematically derived, 
and subtracted from the Earth’s gravity field to compute the anomalous gravity field, which is then modelled 
and applied for a broad spectrum of applications. There are two conventional parameters to represent the 
anomalous field. The first is the gravity anomaly, which can be expressed by the spherical harmonics as 
follows (Heiskanen and Moritz, sect. 2-23, p115, 1967) 

∞
𝑅𝑅 𝑛𝑛+2

 ∆𝑔𝑔(𝑟𝑟 ,𝜙𝜙 , 𝜆𝜆 ) = �� � ∆𝑔𝑔
𝑟𝑟 𝑛𝑛(𝜙𝜙 , 𝜆𝜆 ) (1) 

𝑛𝑛=0

The triplet (𝑟𝑟 ,𝜙𝜙 , 𝜆𝜆 ) represents spherical coordinates (radius, latitude, longitude); 𝑅𝑅 the radius of the geoid 
in spherical approximation; and ∆𝑔𝑔𝑛𝑛 are the Laplace surface harmonics. The gravity anomaly is used when 
the orthometric height is available. That is the case for historical surface gravity data. For airborne 
gravimetry, the positions of the data points are provided by Global Navigation Satellite Systems, and gravity 
disturbances are the natural choice:   

∞
𝑅𝑅 𝑛𝑛+2

 δ𝑔𝑔(𝑟𝑟 ,𝜙𝜙 , 𝜆𝜆 ) = �� � δ𝑔𝑔𝑛𝑛(𝜙𝜙 , 𝜆𝜆 ) (2) 
𝑟𝑟

𝑛𝑛=0

Let 𝑟𝑟 = 𝑅𝑅 + 𝐻𝐻𝐻𝐻, and 𝐻𝐻𝐻𝐻 is a constant height, then we can express the gravity disturbance at the constant 
height of 𝐻𝐻𝐻𝐻 into the surface spherical harmonics  

∞

 δ𝑔𝑔(𝑅𝑅 + 𝐻𝐻𝐻𝐻 ,𝜙𝜙 , 𝜆𝜆 ) = �δ𝑔𝑔𝐻𝐻𝐻𝐻𝑛𝑛 (𝜙𝜙 , 𝜆𝜆 ) (3) 
𝑛𝑛=0

where 



𝑅𝑅 𝑛𝑛+2
 δ𝑔𝑔𝐻𝐻𝐻𝐻𝑛𝑛 (𝜙𝜙 , 𝜆𝜆 ) = � � δ𝑔𝑔𝑛𝑛(𝜙𝜙 , 𝜆𝜆 ) (4) 

𝑅𝑅 + 𝐻𝐻

or  

𝑅𝑅 + 𝐻𝐻𝐻𝐻 𝑛𝑛+2
 δ𝑔𝑔𝑛𝑛(𝜙𝜙 , 𝜆𝜆 ) = � � δ𝑔𝑔𝐻𝐻𝐻𝐻𝑛𝑛 (𝜙𝜙 , 𝜆𝜆 ) (5) 

𝑅𝑅

Substituting Equation (5) into Equation (2), and let 𝑟𝑟 = 𝑅𝑅, we obtain the gravity disturbance on the geoid 
as 

∞
𝑅𝑅 + 𝐻𝐻𝐻𝐻 𝑛𝑛+2

 δ𝑔𝑔(𝑅𝑅 ,𝜙𝜙 , 𝜆𝜆 ) = �� � δ𝑔𝑔𝐻𝐻𝐻𝐻𝑛𝑛 (𝜙𝜙 , 𝜆𝜆 ) (6) 
𝑅𝑅

𝑛𝑛=0

 It can be seen that the gravity disturbance component of degree n at the height of 𝐻𝐻𝐻𝐻 is amplified by a 
𝑛𝑛+2

factor of �𝑅𝑅+𝐻𝐻𝐻𝐻� when it is continued downward to the geoid. For 𝐻𝐻𝐻𝐻 = 6 km and  𝑛𝑛 = 2,160 
𝑅𝑅

(corresponding to the 5’ spatial resolution), the amplification factor is about 8. When 𝑛𝑛 = 10,800 
(corresponding to the 1’ spatial resolution), the amplification factor is about 26,000. The same amplification 
factors also applies for the error components rendering DCP unstable. A filtering or regularization method 
must be used to control noise amplification at the cost of introducing a bias into the signal. An effective DC 
method makes a tradeoff between noise amplification and bias. 

 

3.2 Case simulation 1: regular grids 
 

3.2.1 Simulation set up 
Simulation 1 synthesizes a 1’x1’ grid of gravity disturbances from EGM2008 (Pavlis et al. 2012) in an area 
of 5° x 9° [34° - 39°N; 250° - 259°E] at 6200 m altitude (the mean flight height of the MS05 GRAV-D 
block over the area of Colorado) as input data (see Figure 1). A second grid is synthesized on the reference 
ellipsoid and serves as the control dataset to quantify DC errors per method. Two noisy datasets were 
generated by adding i) zero mean white Gaussian noise with a standard deviation of 1 mGal, and ii) colored 
AR(1) noise with parameter 0.9 and driven by white Gaussian noise with variance 0.19 mGal2, which 
ensures that the noise standard deviation is also 1 mGal. This gives three datasets, which differ in terms of 
the superimposed noise: noise free, white noise, and colored noise, respectively. Figure 2 shows the Power 
Spectral Density (PSD) of the two noise processes. It shows that the PSD of the AR(1) noise is stronger 
than that of the white noise at the frequencies below 0.035[cycles/km]. 

3.2.2 Inverse Poisson 
The Poisson DC has been performed using the three sets of simulated input data with the threshold RMS 
values at 0.001 mGal and 1.0 mGal. These thresholds represent the accuracy of input data without and with 
noise, respectively. The iterative solutions are convergent for the noise free case regardless the small grid 
size of 1’ and the large altitude of 6200 m. When the 1 mGal white and colored noise are included, the 
iterative solutions do not converge with the threshold RMS values of 0.001 mGal when the maximum 
number of iterations is 1000. The noise level is amplified by a factor of 2 and 3 in magnitude when the 
maximum iterations are set equal to 100 and 1000, respectively. This reflects the ill-conditioning of the 
inverse Poisson problem for the chosen set-up. Setting the threshold value to 1.0 mGal makes the solutions 
convergent leading to an error level which is one magnitude higher than the input noise level. The resulting 
DC errors from 6200 m to 0 m altitudes are evaluated and shown in Figure 3 with the maximum number of 



iterations set to 100. DC errors have been estimated with both the full simulation field shown in Figure 1 
and the residual fields with respect to a reference model xGeoid16refA truncated at different degree. 
xGeoid16refA was developed at NGS, and is a combination of EGM2008 and GOCO05s, complete to 
degree 2159 with some additional coefficients up to degree 2190 similar to EGM2008. 

In the case of noise free input data and a threshold of 0.001 mGal, the DC errors shown as red thick lines 
are smaller than 1 mGal for the full field DC, and smaller than 0.1 mGal for the residual fields. When a 
threshold of 1 mGal is set with the noise free input, the errors shown as red dash lines increase to several 
mGal suggesting that the signal of omission below the level of 1 mGal is significantly amplified in the DC 
solutions. In the case of white and colored noise input data with the threshold of 0.001 mGal, the noise 
levels are amplified more than 100 times in the DC results. This suggests that filtering high-frequency noise 
is essential before the Poisson DC is applied. Otherwise the DC fails. The threshold of 1 mGal with the 
noise input effectively reduces the DC errors to a few mGal, which still is large. Again it points out the 
necessity of filtering noisy input data before the Poisson DC (see e.g. Alberts and Klees 2004). It is 
noticeable that the white noise causes larger DC errors than the colored noise. This can be explained by the 
fact that the PSD of white noise is much larger than that of the AR(1) noise at higher frequencies (cf. Figure 
2). There are a few sharp turning patterns in the error curves when using a 0.001 mGal threshold, which are 
due to numerical round-off errors. 

3.2.3 Moritz’s ADC 
DC errors for Moritz’s ADC have been estimated for the 5th order approximation. The results are shown in 
Figure 4. In the case of noise free data, the DC errors are at the mGal level. However, in the case of noisy 
input data, the DC errors are 10 to 100 times larger than the input noise level. Similar to the Inverse Poisson, 
the white noise causes much larger DC errors than the colored noise. There is not an effective way to control 
the amplification of noise by the method itself other than truncating the ADC series 𝐺𝐺𝑛𝑛  to a lower order, 
and a pre-filtering process is necessary before the ADC is applied. 

 

3.2.4 RBF without regularization 
We only examine the extreme case, which is DC from 6200 to 0 m, and study the amplification pattern of 
DC errors. Input data are the gravity disturbance residuals with respect to the reference model, 
xGeoid16refA, truncated at degree 190. A RBF band-limited to degrees 190 to 2190 is fitted using ordinary 
least-squares to the noise-free, white-noise and colored-noise datasets, respectively. No regularisation was 
used. For error-free data, the DC errors range from -5 to 5 mGal with a standard deviation of 1 mGal. Figure 
5 shows DC errors for the cases of adding white and colored noises to the input data. The magnitude of DC 
errors by RBF is significantly lower than those by the Inverse Poisson and Moritz’s ADC. Note that even 
better results can be expected if regularisation is applied. 

 

3.3 Case simulation 2: flight lines and surface points 

3.3.1. Simulation set up 
Here, the noise free, white noise and colored noise datasets are generated along real flight trajectories from 
GRAV-D’s MS05 campaign (in Colorado). The simulated airborne gravity data are shown in Figure 6. 

The flight altitudes range from 5200 to 7900 m. There are data gaps in the survey. The mean value is about 
5.7 mGal with a standard deviation of 29.1 mGal. Most of the strong signals are found over mountain ridges. 
These scattered point data at flight levels are used as the observations for a more realistic simulation case. 
The ground truth data set comprises gravity disturbances from EGM2008, synthesized at the 31,358 NGS 



point surface gravity data. The simulated surface gravity disturbances are plotted along with their 
topographic heights in Figure 7. 

Strong variations of gravity disturbance are visible in the mountainous regions in the west. The eastern part 
is relatively flat. The mean value is about -6.4 mGal with a standard deviation of 30.9 mGal. 

3.3.2 RBF without regularization 
The three sets of simulated input data in sub-section 3.3.1 are more realistic than the input datasets in sub-
section 3.2.1, and are expected to provide a more realistic estimation of DC errors. Following the same 
RBF modelling procedure and using the same degree of reference field, DC errors have been estimated both 
at grid points on the reference ellipsoid and at the surface points. For noise free input data,, DC errors range 
from -3 to 2 mGal; the standard deviations is 0.1 mGal at both grid and surface points. DC errors for the 
noisy datasets are shown in Figures 8 and 9. Their levels are higher than the input noise level by a factor of 
about 700 to 1200. We explain this by a combination of different factors: i) the heterogeneous distribution 
of data points with a dense sampling along the flight trajectories and larger gaps between neighbored tracks; 
ii) a sub-optimal RBF network for given dataset, and iii) the lack of regularisation. 

 

4. Stabilization of DCP 
4.1 Compression of errors 
There are three basic methods to compress the errors of DC: spatial filtering, LSC and the least-squares 
regularization. The first method spectrally filter out errors in gravity data to stabilize DC (e.g., Jekeli 1981), 
while the second and third methods compress the errors by regularization (see e.g. Rummel et al. 1979). As 
an example of spectral filtering, SHA acts as a low-pass filter up to the maximum degree of SHA to avoid 
the high-degree noise. In this section, we assess the three methods using the same simulated data sets as in 
Section 3. 

4.2 Case simulation 1: regular grids 

4.1.1. LSC 
The first step of LSC is building the covariance functions. Figure 10 shows the empirical covariance 
functions as well as the corresponding best fits to residuals with respect to the reference fields of different 
maximum degrees by choosing appropriate high-frequency attenuation depth parameter D, and low-
frequency attenuation depth parameter T. The most important part of the fitting is the part up to the half-
power point (or sometimes the zero crossing). What happens to larger lags, as shown by the sinusoidal 
oscillations in the figure, is less relevant for determination of the covariance function, as the DC effects are 
primarily affected by the correlation length of the input signal 

Once a suitable set of covariance parameters are found, the LSC prediction is carried out to continue the 
input grids from 6200 m altitude to lower altitudes, at which the predicted values are compared with the 
corresponding values synthesized from EGM2008. To speed up the computation, OpenMP and fully 
parallelized matrix inversion and multiplication subroutines are added to the original GRAVSOFT program. 
Due to RAM limitations, the input grid is 2’x2’ that is extracted from 1’x1’ data, while the prediction output 
is a 1’x1’ grid to be identical to the outputs from other methods. The 2’x2’ spacing is still sufficient for this 
simulation because the true resolution of simulated input is 5’x5’. The RMS of the differences are shown 
in Figure 11. 

The first thing that needs to be pointed out is that LSC works well for the full field for noise free and noisy 
datasets. The DC errors for the noisy datasets is less than 1.5 times of the DC errors for the noise free dataset 



in contrast to 100 to 1000 times for the ill-posed inverse Poisson results in sub-section 3.2. This is explained 
by the regularizing effect of the noise covariance matrix (e.g., Rummel et al., 1979). The DC errors are 
larger for the colored noise dataset for both the full field and the residual field solution (reference field 
complete to degree 690). 

In addition to finding the covariance function parameters, the noise term also determines the quality of the 
LSC results. Figure 12 shows that the DC error for the noise free input changes with respect to levels of the 
noise term added to Eq. (A.2.3). For this case, it is known that the data are noise free. However, if 𝐷𝐷n,n is 
set to zero in Eq. (A.2.3), the covariance matrix is getting very close to singular, and the output becomes 
astronomic numbers and meaningless. Adding appropriate artificial noise helps to stabilize the solution; 
this highlights the ill-posed problem of the downward continuation process. 

 

4.1.2. SHA 
Figure 13 shows the degree variances of the (residual) gravity disturbances after fitting the data over the 
simulation area into SHA by using the procedures described in Appendix A.1. 

We observe that the power of this local field after global zero padding is completely different from the 
power of the global field. For the full field signal (first row, first column), the peak of the degree variance 
for the full field data locates around spherical harmonic degree 55, which is about a wavelength of 730 km 
approximating the dimension of the entire study area. Then the power decreases more or less according to 
Kaula’s rule towards the higher degrees as expected. There are obvious spectral components in the low 
degrees because of applying the global function for a representation of space-limited data. The noise effects 
are relatively small. The white noise is more evenly distributed than the colored one in the spectral domain 
as expected. Due to the strong signal-to-noise ratios, they are not being mistakenly taken into the models 
so much as to smear the signal. The noisy spectrum becomes more and more significant when removing a 
higher degree reference field, the signal to noise ratio reduces as there is less signal power in the residual 
field. 

For the residual fields, the corresponding degree variance plots in Figure 13 show the location of the 
maximum degrees removed. They also show the power due to the GOCO05s updates to EGM2008, 
especially when a reference field complete to degree 2190 is used.  

Figure 14 shows the DC errors for the SHA method. This method models the gravity field with an inherent 
low-pass filtering process, which effectively stabilizes DCP. It manifests a direct way to compress the large 
DC errors of high-frequency so that the SHA DC errors are at the comparable magnitude between the noise 
free and two types of noise input data. The colored noise results show larger errors than the white noise 
ones because of the differences in their spectral distribution of noise (see Figure 2). Interestingly, this 
method “works well” even when the “local” coefficients do not match the “global” coefficients. For 
example, for the case when the reference field is complete to degree 2190, the RMS value of the DC error 
from 6200 m to the ellipsoid is 0.0189mGal, much smaller than the RMS in the original residuals 
(σ_(EGM2008-FullxGeoid16refA)=0.298mGal). Because we know the differences between EGM2008 and 
xGeoid16refA range from degree 2 to 280, the residual coefficients higher than degree 280 reflect spectral 
representation of SHA for the space-limited data. If the residual coefficients are only used up to degree 280 
in the restore step, the RMS mismatch changed from 0.0189 mGal to 0.0431 mGal (red vs red dash lines in 
the bottom-right graph of Figure 14). Though the RMS values in this case  are very small, we know that the 
“residual coefficients” are not spectrally ‘real’ in a global sense. 

 



4.3 Case simulation 2: flight lines and surface points 
The simulated data in sub-section 3.3.1 are used in this case simulation. Both simulated airborne and surface 
gravity disturbances have the same spectral content as EGM2008, with the data at the flight level being 
smoother than the surface data, as a natural consequence of attenuation of gravity field variations with 
altitude.  

Before DC, a reference field was subtracted from the data. The reference field is the XGM18 model 
complete to spherical harmonic degree 760 (which corresponds to an ellipsoidal harmonic degree of 719) 
complemented by the Earth2014 model (Rexer et al. 2016) for ellipsoidal harmonic degrees 720 to 2190. 
The resulting residual field evaluated along the flight trajectories defines the noise-free dataset. Similar to 
simulation case 1 in sub-subsection 3.2, white and colored noise, respectively, with a standard deviation of 
1 mGal were added to the noise free residuals to generate two noisy datasets. All three sets of residual 
gravity disturbances are downward continued to the surface points of Figure 7. Thereafter, the full 
downward continued gravity disturbances were computed by restoring the reference field quantities. 
Gravity disturbances errors were computed as the difference to the ground truth gravity disturbances from 
EGM2008.  

The SHA, inverse Poisson, and ADC methods, use gridded data as input to the downward continuation. 
First, residual gravity disturbances were generated along the real flight trajectories from EGM2008 - 
XGM18 - Earth2014. The data were used to compute the parameters of the model covariance function. 
Using the latter, LSC was used to interpolate the data at the nodes of a 1’x1’ grid, which was located at a 
mean altitude. It should be noted that the inverse Poisson and ADC results are computed in two steps. First, 
the LSC-predicated airborne grids are downward continued to the surface of the reference ellipsoid. Second, 
the gravity disturbance residuals are computed by the forward Poisson method at the surface points. The 
SHA results are computed in a different two-step procedure. First, a spherical harmonic gravitational model 
is developed, and then the results are synthesized from the model. In contrast, the LSC and RBF results are 
computed by directly predicting the residuals at the surface points from the flight lines. 

The error statistics are shown in Table 1. For noise free data, the error standard deviations range from 0.1 
mGal (RBF) to 0.7 mGal (LSC+ADC); using LSC on the full signal gives a worse standard deviation of 
1.0 mGal, though the spatial distribution of the errors is heterogeneous which largest errors in mountainous 
regions where the model covariance differs significantly from the real covariances. The RLSC solution did 
not perform better than the LSC solution, though the method was developed to improve over LSC (Willberg 
et al. 2019). For the SHA method, truncating the coefficients below degree 300, where the global model 
should be dominating the spectrum, will almost double the DC error (0.3 mGal to 0.6 mGal) in the error 
free case because of the space-limited data. 

Table 1. Statistics of DC errors of the six methods at 31,358 surface gravity points (unit: mGal).  

Methods Noise free 1 mGal white noise 1 mGal colored noise 

 mean std Mean std mean std 

LSC 

(Full field signal 
without RCR) 

-0.004 

(-0.012) 

0.320 

(0.958) 

0.001 1.014 0.086 1.887 

LSC+SHA 

(d/o>300) 

0.002 

(0.050) 

0.346 

(0.627) 

0.029 

(0.033) 

1.482 

(1.577) 

0.087 

(0.114) 

1.908 

(1.998) 



LSC+Inverse Poisson 0.007 0.319 0.028 1.463 0.088 1.912 

LSC+ADC 0.027 0.689 0.028 1.459 0.072 1.588 

RBF 0.000 0.127 0.049 1.307 0.094 1.973 

RLSC -0.015 0.321 0.040 0.934 -0.047 2.133 

 

For white noise data,, LSC and RLSC provide again comparable results (1.0 mGal and 0.9 mGal error 
standard deviations). The other four methods have error standard deviations which are 30%-50% larger. 
Unlike simulation case 1, the inverse Poisson and ADC solutions are affected by the white noise only at a 
moderate level demonstrating that the LSC gridding before downward continuation has a stabilizing effect. 

For colored noise data, Moritz’s ADC provides the smallest error standard deviations (1.6 mGal); the error 
standard deviations for the other methods range from 1.9 mGal (LSC, LSC+SHA, LSC+inverse Poisson) 
to 2.1 mGal (RLSC). The solutions based on colored noise data have significantly larger error standard 
deviations than the solutions based on white noise data. The LSC DC errors in the three cases are shown 
here in Figure 15 to illustrate the distribution of DC errors.     

A common feature of the DC errors for these methods is the correlation with spatial variation of the gravity 
field itself. The stronger horizontal gravity gradient the field is, the larger the DC errors. One explanation 
is that the attenuation of gravity signals at the high flight levels leads to the loss of detail at altitude, which 
is magnified along with instrumental noise in the DC process. We speculate that less loss may be achieved 
by the use of RCR scheme with high-quality and extra-high degree EGM models, which regain more details 
in the restore step. This appears to be the case for the LSC method as shown in Table 1, Figures 15 (top 
panel) demonstrates for the case of noise free input. It is clear that the LSC method only “breaks down” in 
several rare spots where the observations have gaps. 

5. Results using airborne and surface gravity data 
5.1 Gravity validation results 
We further evaluate the performance of the various DC methods using the same airborne data set distributed 
to the Colorado 1 cm geoid experiment project (Wang et al. 2021; Sanchez et al. 2021). Compared to 
synthetic EGM2008 data, real airborne data are by their nature along-track filtered gravimetry data, which 
adds additional noise to the comparisons, as does any use of cross-over adjustments of airborne data. 

The Colorado GRAV-D airborne data are decimated to every 8 seconds, which result in 35587 airborne 
data. The same XGM18 reference field and the same topographic effects used in sub-section 4.3 are then 
removed to generate the gravity disturbance residuals. It is worth noting that the spectral band of the 
airborne data is limited. If the spectral contents are not matching, all the methods will be subject to the same 
errors. The NGS shared surface gravity data in the Colorado experiment project are used to validate with 
the downward continued airborne data. Note that all the duplicated surface points in that study are removed. 
The XGM18 and topographic effects are also removed so that the residuals are comparable with the 
downward continued residuals of the GRAV-D data.  

To remove the highest frequency information in the surface data that are attenuated in the airborne data, a 
high-resolution RTM technique (Forsberg 1984) is applied to the surface data. The surface gravity 
anomalies are converted into gravity disturbances by using EGM2008 geoid values. In general, this 
evaluation is the same as case simulation 2 in sub-section 4.3 except for that the datasets are real and are 
identical to those in Willberg (2020). 



The DC errors are summarized in Table 2 for all the six methods. Strictly speaking, the GRAV-D data are 
not directly comparable with the surface gravity data because the former are band-limited due to the high 
altitude and along-track filtering applied while the latter are surface point observations. In the case of errors 
negligible in observation and computation, the difference between them largely reflects the omission error 
of GRAV-D data.  Otherwise, the residuals comprise the omission error, observational error, and 
computational error. Again, only the LSC results are illustrated here in Figure 16. As it can be seen, large 
errors are mostly associated with higher topography in the region of study where the omission error tends 
to dominate.  

When RTM effects are computed from surface data only, and considering that the spectral band of airborne 
data does not contain as much high frequency information as the surface data, a high-resolution RTM 
(Forsberg 1984) effect in the surface data has to be removed to make them spectrally consistent. The 
question is: “Which degree is considered as the high frequency?”. We know the XGM18 and topographic 
effects below 2190 have been removed. However, we also know that the RTM technique has 
approximations related to the “harmonic correction” of data points below a smooth mean elevation surface 
(Forsberg 1984). Thus, we tried several different cut-off degrees to optimize the approximate approach. 
Figure 17 shows the RTM-corrected RMS differences with respect to the reference spherical harmonic 
degree for RTM. It is clear that if the reference degree is too low the gravity signal of the topography gets 
removed twice (once from XGM18 and Earth2014, once from RTM), while if it is set too high some of the 
high frequency signal is not removed completely. The minimum value is right in the band between degree 
2500 and 3000. Though it is not exactly equal to degree 2190, it may be close to this theoretical value. As 
Figure 17 shows, after applying the RTM correction, RMS of the mismatch is reduced from 11.5 mGal to 
5.4 mGal. 

Table 2. Statistics of the differences between the downward continued airborne data and surface data 
without/(with) RTM correction (units: mGal). 

methods Mean Std. 

SHA/(-RTM) 

d/o > 300/(-RTM) 

2.7/(-1.0) 

2.3/(-1.5) 

11.6/(5.5) 

11.5/(5.6) 

LSC(-RTM) 2.7/(-1.0) 11.5/(5.4) 

Inverse Poisson 1/(-RTM) 2.7/(-1.0) 11.5/(5.4) 

Inverse Poisson 2/(-RTM) 2.7/(-1.1) 11.6/(5.8) 

ADC/(-RTM) 2.7/(-1.1) 11.5/(5.5) 

RBF/(-RTM) 2.2/(-1.5) 11.4/(5.4) 

RLSC/(-RTM) 2.4/(-1.3) 11.9/(5.4) 

 

What we are interested in is the computational error of DC caused by each method. As the residual results 
from all the methods are subject to the same omission error and observational error, a lower level of 
residuals indicates a better agreement with the surface gravity data. The residuals shown in Table 2 are 
similar among all six methods, and the differences are not significant enough to tell which method is the 
best when taking in consideration the observational errors from the GRAV-D and surface data, which are 
estimated to be typically 1-2 mGal for each source.  



However, LSC has an advantage because it combines regularization and DC into one step through a 3D 
covariance function and provide comparable results with the other methods. Unlike LSC, RLSC is built 
upon covariance matrices computed from the reference GGM. RBF is also attractive because it is a local 
method and can directly operate on scattered data; only in case of larger data gaps, interpolation may be 
necessary to obtain optimal results. An effective check to the LSC DC is the combination of LSC gridding 
and Poisson DC to detect systematic biases by LSC alone. Though the Inverse Poisson can start from 
scattered points too, it has been shown that it is better to start from gridded data (Alberts and Klees, 2004). 
For the SHA method, truncating the coefficients below degree 300 increases the SHA DC error. 

5.2 Geoid results 
The geoid models are computed from the gravity disturbances continued onto the reference ellipsoid by 
(see Appendix B) 

 𝑁𝑁(Ω) = 𝜁𝜁0(Ω) + 𝜁𝜁1(Ω) + 𝜁𝜁Ref(Ω) + 𝑑𝑑𝜁𝜁(Ω) + 𝐻𝐻T(Ω) (7) 

where 𝜁𝜁0 and 𝜁𝜁1are the degree-0 and degree-1 terms, respectively (Sánchez et al. 2021; Wang et al. 2021); 
𝜁𝜁Ref is the height anomaly on the reference ellipsoid (GRS80), which is synthesized from XGM18 and the 
synthetic topographic geopotential model predicted from Earth2014; and  

𝑅𝑅
 𝑑𝑑𝜁𝜁(Ω) = � 𝑆𝑆 (𝜓𝜓)[𝛥𝛥𝑔𝑔 (Ω′) − 𝛥𝛥𝑔𝑔 (Ω′)]𝑑𝑑𝑑𝑑 (8) 

4𝜋𝜋𝜋𝜋(Ω) MDB Airborne Ref
σ0

where 𝜋𝜋(Ω) is the normal gravity on the reference ellipsoid; 𝑆𝑆MDB a modified degree-banded Stokes kernel 
function which spans from spherical harmonic degree 210 to 2160 with transitional bands of 60 and 120 
degrees at the low and high ends, respectively (Huang, and Véronneau 2013). 𝛥𝛥𝑔𝑔Ref is the gravity anomaly 
on the reference ellipsoid synthesized from XGM18 and the synthetic topographic geopotential model 
predicted from Earth2014 too. The full airborne gravity disturbance continued onto the reference ellipsoid 
is transformed into the gravity anomaly by  

 𝛥𝛥𝑔𝑔Airborne(Ω) = 𝛿𝛿𝑔𝑔Airborne(Ω) − 0.3086𝑁𝑁CGG2013(Ω) (40) 

The term 𝐻𝐻T transforms the height anomaly evaluated on the reference ellipsoid into the geoid height.      

The resulting geoid models are validated using the GSVS17 GPS-levelling data in the region of study (van 
Westrum et al. 2021). The results are shown in Figure 18. As it can be seen that all the methods have a 
similar performance except for two cases. The case of Poisson1 gives a slightly poor agreement, in which 
the DC threshold value is set as 1 mGal to reflect the data error. The other case is for SHA300, in which 
the spherical harmonic model is truncated to degree 300. These geoid validation results are consistent with 
the gravity ones in sub-section 5.1.  

6. Summary and conclusions 
Downward continuing airborne gravity data from flight heights onto the surface of the Earth or a level 
surface, from scattered points into regular sampled grids, enables the direct use of the classical geoid 
procedures that is based on Stokes’s integrals.  However, this downward continuation procedure is not a 
trivial task due to the instability of this procedure. Four classical DC methods and two relatively newer 
approaches have been tested using both simulated data and real data.  

For the simulation tests, both regular sampled grids and scattered points are used in two cases of noise 
scenarios. If the data are regularly sampled and noise free, all methods perform reasonably well, except for 
an artificial noise term which needs to be added to LSC to avoid round-off error amplification. These ideal 



data sets are used to verify the correctness of the developed software that can be shared on request. For the 
SHA approach, all of the spectrum of the real gravity field is distorted. The reason is that when fitting a SH 
model to a space-limited dataset, the power in the signal is distributed over all frequency (i.e., over the SH 
coefficients) providing a power spectrum which differs completely from the power spectrum of the global 
dataset. The least-squares constraint does not control the spectrum when minimizing the residuals. This 
casts a heavy doubt on any method that tries to directly combine a global gravity field and local gravity 
field in the spherical harmonic domain. 

In the white noise and colored noise cases, the performances of all methods are degraded; the inverse 
Poisson becomes unstable, while Moritz’s ADC diverges. However, the covariance matrix in LSC and the 
linear solver in SHA can still control the noise effects to reasonable magnitudes. For the LSC, an accurate 
estimation of the noise level is equally important as the estimation of the covariance functions. The tests on 
the gridded data prove that there are no major problems in the developed software, i.e., no bugs in the codes. 

For the simulated tests on scattered points, the RBF gives the best results in the error free case. Even in the 
white and colored noise cases, RBF still performs reasonably well if the data is band-limited. Further 
improvements are expected when using a more careful RBF network design and a regularized weighted 
least-squares estimator instead of the un-regularized ordinary least squares estimator (e.g., Slobbe 2013, 
Slobbe et al 2019). 

In the real data tests, the residual gravity disturbances are not band-limited in the spectral range after 
removing the GGM and Earth2014. This is a typical situation in airborne data applications, where the goal 
exactly is to detect problems in medium-wavelength gravity field variations. In the Colorado case, the 
different methods gave similar results, mainly due to the unavoidable errors in airborne data, and the 
relatively high flight level.  

We note that due to the lack of band-limited data, the current implementation of RBF cannot efficiently 
distinguish signal from noise, which is also true for inverse Poisson. The afore-mentioned improvements 
may provide a significantly better RBF solution. We also note that both the simulated tests and the real tests 
do not show significant numerical improvement from LSC to RLSC, though the latter has some theoretical 
advantages, but also requires more intense computational effort to establish the complicated covariance 
matrices. This casts a doubt on the practical application of this improved LSC method for airborne gravity 
data. 

The geoid models are computed from the DC results from all the methods, and are validated by the GSVS 
GPS-levelling data. They show a similar agreement around 3 cm r.m.s., with LSC performing marginally 
better than the other methods. Giving the rough topography in the Colorado areas this is a good result, but 
also highlight the limits of high-level airborne gravity data in terms on reaching a 1 cm-geoid as a stand-
alone data source without supplementary surface gravimetry data.  
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Figure 1. Simulated gravity disturbances from EGM2008 at an altitude of 6200 m. 

 

 

 

 



 

Figure 2. One-Sided Welch periodogram of (bandlimited) white noise and colored noise realizations, 
respectively. The noise standard deviation is 1 mGal in both cases. The noise realizations were used to 
generate two noisy gravity datasets. 

 

 

 

 

 

 



 

Figure 3. The Poisson DC errors as function of altitude for different reference fields removed and the two 
types of noise added to the data. 

 

 



 

Figure 4. Moritz’s ADC DC errors as function of the altitude for different degree and order of reference 
fields removed and the two types of added noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 5. RBF DC errors for adding white noise (top) and colored noise (bottom) to the simulated input 
gravity data at an altitude of 6200 m. 

 

 

 

 



 

Figure 6. Simulated EGM2008 gravity disturbances along real flight trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 7. The simulated gravity disturbances at 31,358 points on the topography as ground truth. 

 

 

 

 

 



 

 

Figure 8. RBF DC errors on the reference ellipsoid for adding white noise (top) and colored noise (bottom) 
to the simulated input gravity data at the flight lines. 



 

 

Figure 9. RBF DC errors at the surface points for adding white noise (top) and colored noise (bottom) to 
the simulated input gravity data at the flight lines. 

 

 

 



 

Figure 10. The empirical covariance functions and fitted model covariances fordifference scenarios. 

 

 

 

 

 

 



 

Figure 11.  LSC DC errors as function of altitude for the reference fields of different maximum degrees and 
the two types of data noise. 

 

 



 

 

 

Figure 12. Effect of the choice of the Dn parameter on LSC downward continuation for the noise free input 
as function of altitude (DC errors with Dn values of 0.5, 1, and 2mGal  are represented by purple, blue and 
red thick lines, respectively). 

 



 

Figure 13. Degree variances of the SHA models from the simulated input data after removing xGeoid16refA 
truncated at various spherical harmonic degrees. 

 

 



 

Figure 14. The SHA DC errors as function of altitude for the reference fields of different degrees and the 
two types of data noise. 



 

 

 

 

Figure 15. DC errors of LSC for three datasets: noise free (top), white noise (middle), and colored noise 
(bottom). 

 



 

Figure 16. Differences between LSC downward continued residual airborne data and residual surface 
gravity data. No RTM correction applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 17. RMS of the differences between the downward continued airborne data and control surface data 
as function of the  reference spherical harmonic degree of the RTM effect removed. 

 



  

Figure 18. Geoid model differences with respect to the GSVS17 validation data. 


	Abstract
	1. Introduction
	2. Overview of DC methods
	3. Characterization of the ill-posed problem
	3.1 Amplification of errors
	3.2 Case simulation 1: regular grids
	3.2.1 Simulation set up
	3.2.2 Inverse Poisson
	3.2.3 Moritz’s ADC
	3.2.4 RBF without regularization

	3.3 Case simulation 2: flight lines and surface points
	3.3.1. Simulation set up
	3.3.2 RBF without regularization


	4. Stabilization of DCP
	4.1 Compression of errors
	4.2 Case simulation 1: regular grids
	4.1.1. LSC
	4.1.2. SHA

	4.3 Case simulation 2: flight lines and surface points

	5. Results using airborne and surface gravity data
	5.1 Gravity validation results
	5.2 Geoid results

	6. Summary and conclusions
	References cited in the main text
	Figures



